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Oscillatory Behavior in Cosmological Models 
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Oscillatory behavior in cosmological models is investigated, motivated, in part, 
by the apparent periodic distribution of galaxies in deep narrow-cone red-shift 
surveys. In particular, oscillatory behavior in two cosmological models is studied; 
a qualitative analysis is performed and approximate solutions are found for a soft 
inflationary model and for a Fdedmann-Robertson-Walker model containing a 
perfect fluid and a scalar field source. These two models are 'conformally 
equivalent' to particular models arising from a large class of scalar-tensor theories. 
It is then argued that such oscillatory behavior is a genetic property of scalar- 
tensor theories of gravity. 

1. ~TRODUCTION 

We investigate cosmological models with an oscillatory behavior. This 
analysis is motivated, in part, by observations from the deep narrow-cone 
pencil beam surveys of Broadhurst et  al. (1990), which suggest that the 
universe may have an oscillatory nature, and this analysis is also related to 
work of Morikawa (1990a,b) in which the oscillatory behavior in the Hubble 
parameter was used to model these observations. The cosmological models 
proposed by Morikawa are not physical, in the sense that they do not agree 
with all astronomical observations (Hill et  al. ,  1990). However, we want to 
stress the fact that oscillatory behavior is a general feature of general relativity 
with a scalar field in particular, and of scalar-tensor theories in general (in 
which oscillatory behavior is found in the effective gravitational constant as 
well as in the Hubble parameter). It is this oscillatory behavior in the cosmo- 
logical models that may account for the apparent periodicity in the Broadhurst 
et al. observations. 
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In Section 2, it is shown that the oscillating behavior of the scalar field 
in the soft inflationary model found in previous work (Abolghasem et  al., 
1993) manifests itself in the Hubble parameter, and we also find an approxi- 
mate solution exhibiting this oscillatory behavior. It is known that in the 
standard Friedmann-Robertson-Walker (FRW) model with a single scalar 
field with potential V(~b) = (�89 h)~b 2 the scalar field undergoes oscillatory 
behavior (Belinskii et al., 1985a,b; Belinskii and Khalatnikov, 1987). We 
further expand this result in Section 3 by analyzing an (FRW) model con- 
taining a perfect fluid source and a scalar field. Again an approximate solution 
is found whereby the Hubble parameter is assumed a pr ior i  to have an 
oscillatory nature. In Section 4, we argue (using the conformal equivalence 
between general relativity with multiple minimally coupled scalar fields and 
scalar-tensor theories of gravity) that this oscillatory behavior is a general 
property of cosmological models arising from scalar-tensor theories of gravity. 
In the final section we make some concluding remarks and briefly comment 
upon the question of whether the oscillatory nature observed in flat FRW 
models persists in nonflat models and the related question of chaotic behavior 
in closed models. 

2. SOFT INFLATION 

2.1. Qualitative Analysis 

In a recent paper (Berkin and Maeda, 1991), a soft inflationary scenario 
was proposed in which the matter content was described by two coupled 
scalar fields. The action under investigation was 

S = d4x x / ~  2 2 (Vqb)2 - 2 (Vt~)2 - e-f3K+V(~) (1) 

w h e r e  I< 2 = 87rG, + and t~ (the inflaton) are scalar fields, V(t~) is the potential, 
and [3 is a coupling constant. Variation of the action in a flat FRW universe 
yields the following set of nonlinear second-order ordinary differential equa- 
tions (ODEs): 

+ 3Hqb - [3Ke-~K+V(t~) = 0 

+ 3H(~ + e - ~ 6  dV(O) _ 0 

(2) 

(3) 

where the Friedmann equation is given by 
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H z = _~_ (~b)2 + 2 (+)2 + e-~K,V(t~) (4) 

An overdot denotes differentiation with respect to time and H = (da is the 
Hubble parameter, where a is the scale factor. 

The system given by equations (2)-(4) was analyzed qualitatively by 
Abolghasem et al. (1993). By defining new independent and dependent 
variables 

dt r  , ,  
= e ~K*/2, @ = = d~e ~K+/2, �9 = = +e ~+/2 (5) 

where prime denotes differentiation with respect to the new time T, the new 
evolution equations for qb' and ~ '  form the following four-dimensional 
autonomous system of ODEs: 

~b' = �9 (6) 

# '  = xI t (7) 

( ; C I ) '  ~--- ~],~ (I)2 - -  2 ~ ~z + Wz + 2V(~) + [3KV(~) (8) 

q,, = [3__.~K q , ~  _ .,/'-6K xI * ~2 + xit2 + 2V(O) dV(t~) (9) 
2 2 d~ 

where 

K2( ) H,2 -- = ~_ ~z + xi,2 + 2V(t~) (10) 

We see that the finite singular points (defined by ~b' = t~' = ~ '  = xI*' 
= 0) are given by 

= O, �9 = O, V(t~) = O, dV(•) = 0 (11) 
d, 

If we consider a quadratic potential V(~) = (�89 2, where h is constant, it 
follows from equation (11) that there is a nonisolated line singularity along 
the ~b axis (qbo, 0, 0, 0). Little progress can be made in analyzing these 
singular points since they are degenerate and nonlinear (Hirsch and Smale, 
1974). However, equations (7)-(9) are independent of the variable ~b; thus 
we can consider the full system (6)-(9) as a three-dimensional subsystem, 
given by equations (7)-(9) [determining the qualitative behavior of the three 
variables (t~, cI), xIt)] together with the fourth equation (6) for ~b. Hence, 
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determining the qualitative behavior of the three-dimensional subsystem will 
permit us to determine the asymptotic behavior of  the fourth variable ~b via 
equation (6). 

Progress in determining the qualitative behavior of the subsystem can 
be made by converting to cylindrical coordinates (Abolghasem et  al., 1993): 

r 
= r cos 0, t~ = ~ sin 0, �9 = z (12) 

The equations then become 

r '  = r cosZ0 ~ 13z - x/-6(z 2 + r2) 1/2 (13) 

0' = ~ - cos 0 sin 0 ~ 13z - ,,/~(z 2 + r2) 1/2 (14) 

z' = z ~ 13z - ,,/'6(z 2 + ra) 1/2 + r 2 sin20 (15) 

We note that if 13 < ,f6, then 

13z - ~'-6(z 2 + r2) 1/2 <-- 0 (16) 

and we have that r '  --< 0 everywhere. It can then be shown (Abolghasem et  
al., 1993) that the equilibrium point (r = 0, z = 0) is a stable equilibrium 
point, that is, as t ~ ~ ,  (r, z) ~ (0, 0). As both r and z approach zero, the 
dominant part of equation (14) is the first constant term, and thus 0 will 
monotonically increase as t --. ~. Hence the singular point (r = 0, z = 0) 
is a stable focus. 

2.2. Asymptotic  Solution 

In a neighborhood of  the stable equilibrium point (r = 0, z = 0) an 
approximate solution may be found. For small r, z, equation (14) yields 0' 
= v/k, which may be integrated to yield 0 = v/k'r (after normalization). 
Assuming z = err (or constant), equations (13) and (15) are consistent if 132 
< 6 and 

a - [3 ( 1 7 )  
( 6  - 132) 1/2 

(Note that the assumption z = otr is only good for z ----- 0, as ot must be 
positive.) The evolution equation for r becomes 
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~:(6 - ~ 2 ) 1 / 2  
' r 2 cosZ(,v/k'r) (18) r = 2 

which is integrated to yield a solution for r: 

1 1 _  K(6 -- [~2)1/2 [ 4  ~ 1  sin(2.V/-~,r) ] (19) 
r ro "~ + , .~,,  

From equations (19) and (10) we then obtain (after renormalizing ~) 

[ ( )]-' 4 1 
H~ - 6 - ~2 -r + ~ sin 2 ,~( ' r  - "to) (20) 

where 

4 
"r~ = r0K(6 - 132) 1/2 

We note the presence of a trigonometric term in the Hubble parameter. It is 
precisely this term that leads to the oscillatory behavior of the cosmologi- 
cal models. 

3. FRIEDMANN-ROBERTSON-WALKER SPACETIME WITH A 
SCALAR FIELD 

3.1. Qualitative Analysis 

Next we will use a qualitative analysis to show that this oscillatory type 
of behavior is possible for an isotropic and spatially homogeneous universe 
containing a single classical scalar field and noninteracting matter. We shall 
adopt the 'Ellis-inverse method' (Ellis and Madsen, 1991) to obtain an ad 
hoc potential V(~b) corresponding to the desired behavior of the scale factor a. 

The field equations of general relativity with a homogeneous scalar field 
with potential V(~b) and a matter field in the form of a noninteracting comoving 
perfect fluid with equation of state p = (~/ - 1)ix are 

H2 + a 2 - 3 

31:1 + 3 H  a = K z V ( ~ )  - dO 2 - ~ (3~/ - 2)t~ (22) 

where k = +-1, 0, and K 2 = 8~G. The separate conservation laws are 

+ 3H~ + V'($) = 0 (23) 
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and 

I~ + 3~/HIx = 0; ~ = Ma  -3~ (24) 

where V' = dV/dd? and M is a constant. The weak and dominant energy 
conditions require M -> 0, 0 <- ~/ -< 2, and V -> 0. 

In particular, in the qualitative analysis we shall assume that k = 0 and 
that the potential V(~b) has the form V(~b) = 1Mb2. By defining the new 
cylindrical coordinates (r, 0, z) 

= F 
qb = r cos  0, ~b ~ sin 0, ~ = l z z  (25) 

the following autonomous system of ODEs results: 

/" - -  v v  K r ( r  2 + Z2) 1/2 COS20 ( 2 6 )  
2 

t) = v/k + - ~  K(r 2 + z2) 1/2 cos 0 sin 0 (27) 

- ~ K~lz(r 2 + z2) 1/2 (28) 
4 

The singular point at finite values of the variables is given by (r = 0, 
z = 0). This singular point is easily seen to be a sink, because t ~ --< 0, and 
for z > 0, ~ < 0 and for z < 0, ~ > 0. As both r and z approach zero the 
dominant part of equation (27) is the first constant term, and thus 0 will 
monotonically increase as t ---> oo. Hence the singular point (r = 0, z = 0) 
is a stable focus for the k = 0 FRW models. 

3.2. Asymptotic Solution 

A simple Painlev6 analysis using the ARS algorithm (Ablowitz et al., 
1980; Ramani et al., 1989) indicates that the system of equations (22)-(24), 
[for general k and a potential of the form V(~b) = �89 2] does not have the 
Painlev6 property, which is conjectured to be a necessary condition for integ- 
rability (Ablowitz et al., 1980; Ramani et aL, 1989), and hence an exact 
solution may not exist. Consequently, we shall seek an approximate solution. 

Again, in a neighborhood of the singular point (r = 0, z -- 0) an 
approximate solution may be found. Using the 'Ellis-inverse method,' and 
in analogy with (20), we assume that the Hubble parameter is of the follow- 
ing form: 
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where ~, 13, and b are constants and we choose units so that 8~G = K 2 = 
1. From equation (29) we have that 

a = aot" 1 + ~ c o s ( b t )  + O (30) 

o( 
/ ] = - ~  1 + b ~ c o s ( b t )  + O (31) 

where O(l / t  s) denotes terms of order (lit3)- (trigonometric functions). From 
(24) we have that 

tx = m t - 2 +  O ( ~ )  (32) 

where m =-- Maf f  3~ and we have chosen ~ ~ 2/(3~/). 
From equations (21) and (22) we find that 

k 
62 = 2 - ~  - 21:t ~ ~lmt -2 (33) 

Henceforth we shall assume that k = 0, whence 

~ ) 2 = ~ ( ( 2 o t - ~ t m ) + 2 o t b f S c o s ( b t ) )  (34) 

= ( 3 5 )  

where ~z ~ 2or - ~/m = 2c~bl3 (which serves to define m). Thus 

and hence 

~b = ~b o + 2---~--- sin ~ t  + O 

which serves to define t = t(~b). 

(36) 

(37) 
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Finally, from equations (21), (22), and (37), we obtain the potential V(qb): 

1 
V(qb) = H + 3H 2 + ~ (~/ - 2)p~ (38) 

= 3 ~  ~ - ~ - ~ b ~  + g (~ - 2)m ~ + - - 7 -  s m  ~ t (39) 

= g2 1 - ",/ 1 b 2 
"/ t(qb)i + ~ (qb - ~b0) 2 (40) 

To leading order, equations (21), (22), and equation (23) are satisfied. In 
general, we obtain the desired behavior for H(t) [viz. (29)] for a single scalar 
field with potential (40) which has a quadratic part and an 'additional part'. 
Note, however, that in the case "y = 1 the first term in (40) is absent; that 
is, the potential V(qb) will be a simple quadratic function of the scalar field 
and the energy density ix will be of the form p, = mt -2, where m =4(1  - b13). 

4.  S C A L A R - T E N S O R  T H E O R I E S  

In the previous two sections we demonstrated that in two cosmological 
models the late-time asymptotic behavior (that is, as t ~ ~) of the Hubble 
parameter contains trigonometric contributions. We will argue that this oscilla- 
tory behavior is a rather general property in the class of scalar-tensor theories 
of gravity. 

The action in the so-called Bergmann-Wagoner theories of gravity (Will, 
1981) can be written in the form 

S= f d4x v/-L-g{ d~R - w(+) } T (Vqb)2 - 2qbh(qb) + Lm (41) 

where Lm is the Lagrangian due to matter and other nongravitational fields. 
Action (41) is equivalent (up to field redefinitions) to 

where 

s = d4x ( ~ ) g  - ~ (V,I,) 2 - V(,I,) + L,. (42) 

f(dp) h (dp) -  V(qS) (43) 
qb -- f ( ~ ) ,  w(~) - 2f,(qb)2, 2f(dP) 

One of the well-known examples of a scalar-tensor theory of gravity is the 
subclass where 
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or equivalently 

~(I)2 and V(CI)) = 0 
f ( q b ) -  16-rr 

27r 
w(qb) - and k(~b) -- 0 

which results in the standard Brans-Dicke theory of gravity. The benefits of 
using either the action (41) or the action (42) are discussed in Liddle and 
Wands (1992). 

We note that ifLm ------ 0, then both (41) and (42) can be recast into the form 
of general relativity minimally coupled to a scalar field through conformal 
transformations and field redefinitions ((Magnano and Sokolowski, 1993; 
Walliser, 1992) and references therein). If L,n = - I ( V I ~ / ) 2  - V(~J ) ,  whence 
the matter is due to a second scalar field, then (41) and (42) may be recast 
into the form of a soft inflationary scenario again through a conformal 
transformation and field redefinitions (Berkin and Maeda, 1991). It was 
precisely these two cases that were investigated in the previous two sections 
of this paper. In Sections 2 and 3 we observed that asymptotically the Hubble 
parameter contained trigonometric contributions. Therefore, in scalar-tensor 
theories, the conformally related Hubble parameter might also be expected 
to contain trigonometric contributions in general. 

However, these conformal transformations may lead to problems; for 
example, the metric may change signature (Magnano and Sokolowski, 1993), 
or the conformal transformation may become singular at the critical points 
of the field equations (Walliser, 1992). Therefore, general results using qualita- 
tive theory are problematic. Consequently, we shall simply demonstrate the 
genericity of the oscillatory behavior of these models with the above action 
(41) or (42), by briefly discussing previous work done without utilizing a 
conformal transformation. 

Walliser (1992) studied the field equations resulting from the action 

S = d 4 x  -6 h(dp)R + g(+)(7+)  z - V(~b) + Lm 

which is a further generalization of the action (42), in a fiat Robertson-Walker 
background. He found that at finite values, there is a critical point that is a 
stable focus, and near this critical point the oscillatory behavior in the variables 
manifests itself in both the Hubble parameter and the effective gravitational 
constant. Romero and Barros (1993) investigated a class of vacuum Brans- 
Dicke models. They found that for appropriate values of the parameter w, 
the late-time asymptotic behavior may be oscillatory in nature, whence the 
effective gravitational constant will also oscillate. [Note in this case the 
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potential h(d0) - 0]. Scalar-tensor theories of gravity based upon the action 
(42) with a nonminimal coupling function f ( ~ )  of the form 

1 1 
f(~b) - 167rG 2 ~qbz (44) 

have also been investigated recently (Morikawa, 1990a, b; Barroso et al., 
1992; Futamase and Maeda, 1989). Barroso et al. (1992) have shown that 
for finite values, the critical points exhibit an oscillatory nature. It is precisely 
these models that Morikawa (1990a,b) investigated in an attempt to model 
the periodic distribution of galaxies. 

However, oscillatory behavior is found not only in scalar-tensor theories 
of gravity, but also in more general theories of gravity, such as theories in 
which derivatives of the scalar fields are nonminimally coupled to the curva- 
ture R via an action of the form 

16-rrG ~(qb) - ,q(V~) 2 R - (Vqb) 2 + V(~) + Lm 

where ~ and "q are constants and where f(qb) is an arbitrary function of qb 
(Amendola, 1993; Amendola et al., 1993), and modified theories of gravity 
with an action of the form 

S = f d4x ,fL--g{F(R, R ~ R  ~', C,~f~.y~C c'f~'~a . . . .  )} 

where F is an arbitrary function of its arguments (Brandenberger et al., 1993). 
This indicates that oscillatory behavior in alternative theories of gravity may 
be a generic property. The behavior of such cosmological models in alternative 
theories of gravity, including more general theories than those discussed 
above, is further investigated in van den Hoogen (1995). 

It is also interesting to note that the deceleration parameter q, defined by 

da 1 
q -  a2 - H 2 ( H + H  2) (45) 

changes sign periodically. A negative q indicates that there exists a region 
of phase space with an accelerated expansion; that is, inflation occurs. In the 
soft inflation case of Section 2 it was shown in van den Hoogen (1994a) and 
Abolghasem et al. (1993) that for 132 < 2 the model must undergo periods 
of both accelerated and decelerated expansion. For the asymptotic solution 
(20) it is easy to see that q has the form 
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q -  2 - 4 132 + 6 - 4 132 cos[2v/h( r _ %)] (46) 

which has an oscillatory nature. For the asymptotic solution (29) the decelera- 
tion parameter is given by 

1 - a b13 
q - - -  + - -  cos(bt) (47) 

(~ OL 

which is again easily seen to have an oscillatory behavior (van den 
Hoogen, 1995). 

The oscillatory behavior in (both the Hubble parameter H and) the 
deceleration parameter q implies that the universe expands faster in some 
stages (and slower in others) than its average value (which is the same as in 
the 'nonoscillating' case) (Steinhardt, 1991). Maeda (1991) studied such 
oscillatory models with regard to structure formation and found a significant 
enhancement in the growth of density perturbations, which perhaps further 
motivates the study of such models. In other work Futamase and Maeda 
(1989) studied scalar-tensor theories with a nonminimal coupling function 
of the form (44) and found that there exist severe restrictions on the parameter 

in order for inflation to occur, and suggested that adding a second minimally 
coupled scalar field might give rise to a more realistic model. 

5. CONCLUSION 

It was proposed by Morikawa (1990a,b) that an oscillating Hubble 
parameter may be responsible for the apparent periodic distribution of galaxies 
(Broadhurst et al., 1990). However, Hill et  al. (1990) argued that such oscilla- 
tions in the Hubble parameter are not consistent with the observations of 
Broadhurst et  al. within the standard FRW model of general relativity. In 
addition they also argued that Morikawa's models are not physically viable. 

However, according to Hill et  al. (1990), an oscillating gravitational 
constant G is one of the most viable candidates for generating an apparent 
periodicity in the distribution of galaxies. If the gravitational constant G is 
allowed to vary with respect to time in the standard FRW models, then 
oscillations in the Hubble parameter induce oscillations in the gravitational 
constant G. In this case, the resulting model nearly agrees with the Broadhurst 
et  al. results and the shortfalls may be due to errors in determining the 
quantity G / G  from the Viking experiment (Hill et al., 1990). 

Morikawa (1990a,b), Hill et al. (1990), and Steinhardt (1991) suggested 
that one way in which the gravitational constant G may vary is to introduce 
a scalar field that is nonminimally coupled to the curvature R in the Lagrangian 
(in other words, to introduce a scalar-tensor theory of gravity). In Morikawa 
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(1990a,b) and Hill et  al. (1990) the nonminimal coupling function has the form 
(44), and consequently the effective gravitational constant G~ff is given by 

16~rGef~ = ( 1 1 ) -1 
"16"rrG 2 ~(I)2 (48) 

and thus varies with time. This class of theories constitutes a subclass of the 
larger class of scalar-tensor theories of gravity governed by (42) in which 
the effective gravitational constant varies with time according to 

16"fi'Geff = f ( ~ ) -  1 (49) 

[or, equivalently, 16wGe~ = 0 -1 from (41)]. Therefore, these more general 
scalar-tensor theories of gravity may give rise to physically acceptable cosmo- 
logical models. 

Both of the models that we have analyzed are flat FRW models and the 
discussion has focused upon such zero-curvature cosmologies. It is of interest 
to ask whether the oscillatory nature of the k = 0 FRW models is stable to 
perturbations in the curvature; that is, whether this oscillatory behavior persists 
in the k ~ 0 models. Belinskii (1985a,b; Belinskii and Khalatnikov, 1987) 
studied the FRW models with a minimally coupled scalar field and a potential 
of the form V(~b) = • 2 using qualitative analysis. They found that for the 2 
k = 0 and k = - 1  models the oscillatory behavior is a general feature; 
however, in the k = + 1 case they noted the existence of a closed chain of 
trajectories, which hints at the possibility of the system having periodic orbits. 
Hawking (1984) showed that there do indeed exist periodic orbits in such 
models and, in particular, a countable infinite set of periodic orbits without 
singularity. Further, Page (1984) showed that there also exists a discrete set 
of nonperiodic orbits without a singular point. These two properties suggest 
the possibility of chaos in the closed models. 

We note that the Painlev6 analysis discussed in Section 3 concerning 
the integrability of the minimally coupled FRW model also suggests chaos. 
Recently, Calzetta (1994) studied various cosmological models using Melni- 
kov's method. In particular, Calzetta analyzed a class of scalar-tensor theories 
withf(qb) of the form (44) with ~ = 1/6 (the conformally coupled case) and 
with a potential of the form V(~) = �89 and found, using both Melnikov's 
method and numerical techniques, that the k = + 1 FRW models exhibit 
chaotic behavior (which in turn suggests the nonintegrability of the models). 
Clearly it is of interest to study whether closed FRW models with a 
potential of the form V(~) = �89 2 exhibit chaotic behavior in other 
theories of gravity. 

In closing, we have studied two models that exhibit oscillatory behavior. 
In both the soft inflationary model and in the FRW model with a scalar field, 
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the Hubble parameter was found to contain trigonometric contributions 
asymptotically. Using the fact that these two theories are conformally 
equivalent to particular scalar-tensor theories of gravity (up to field 
redefinitions), we have argued that such oscillatory behavior is a general 
property of models in all scalar-tensor theories of gravity. We also remarked 
that this oscillatory behavior is found not only in general relativity and 
in scalar-tensor theories of gravity, but also in other alternative theories 
of gravity. With the deep narrow-cone pencil-beam red-shift surveys 
exhibiting an apparent oscillatory behavior in the observed universe, these 
oscillatory cosmological models merit further investigation. 
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